Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{{a}^{e^{ax + lg(e^{π})}} - x + lg(e^{π})} - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{{a}^{e^{ax + lg(e^{π})}} - x + lg(e^{π})} - 1\right)}{dx}\\=&e^{{a}^{e^{ax + lg(e^{π})}} - x + lg(e^{π})}(({a}^{e^{ax + lg(e^{π})}}((e^{ax + lg(e^{π})}(a + \frac{e^{π}*0}{ln{10}(e^{π})}))ln(a) + \frac{(e^{ax + lg(e^{π})})(0)}{(a)})) - 1 + \frac{e^{π}*0}{ln{10}(e^{π})}) + 0\\=&a{a}^{e^{ax + lg(e^{π})}}e^{ax + lg(e^{π})}e^{{a}^{e^{ax + lg(e^{π})}} - x + lg(e^{π})}ln(a) - e^{{a}^{e^{ax + lg(e^{π})}} - x + lg(e^{π})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return