There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{(ax - 1)x}{a} + (b{x}^{e^{x}}))*3\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3x^{2} - \frac{3x}{a} + 3b{x}^{e^{x}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3x^{2} - \frac{3x}{a} + 3b{x}^{e^{x}}\right)}{dx}\\=&3*2x - \frac{3}{a} + 3b({x}^{e^{x}}((e^{x})ln(x) + \frac{(e^{x})(1)}{(x)}))\\=&6x - \frac{3}{a} + 3b{x}^{e^{x}}e^{x}ln(x) + \frac{3b{x}^{e^{x}}e^{x}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !