There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(a{x}^{2} + {sin(x)}^{2})nx}{i}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{anx^{3}}{i} + \frac{nxsin^{2}(x)}{i}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{anx^{3}}{i} + \frac{nxsin^{2}(x)}{i}\right)}{dx}\\=&\frac{an*3x^{2}}{i} + \frac{nsin^{2}(x)}{i} + \frac{nx*2sin(x)cos(x)}{i}\\=&\frac{3anx^{2}}{i} + \frac{nsin^{2}(x)}{i} + \frac{2nxsin(x)cos(x)}{i}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !