There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({({x}^{2} + 1)}^{\frac{1}{2}} + x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln((x^{2} + 1)^{\frac{1}{2}} + x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln((x^{2} + 1)^{\frac{1}{2}} + x)\right)}{dx}\\=&\frac{((\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{1}{2}}}) + 1)}{((x^{2} + 1)^{\frac{1}{2}} + x)}\\=&\frac{x}{((x^{2} + 1)^{\frac{1}{2}} + x)(x^{2} + 1)^{\frac{1}{2}}} + \frac{1}{((x^{2} + 1)^{\frac{1}{2}} + x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !