There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {(1 - 2x)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (-2x + 1)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (-2x + 1)^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(-2 + 0)}{(-2x + 1)^{\frac{1}{2}}})\\=&\frac{-1}{(-2x + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{(-2x + 1)^{\frac{1}{2}}}\right)}{dx}\\=&-(\frac{\frac{-1}{2}(-2 + 0)}{(-2x + 1)^{\frac{3}{2}}})\\=&\frac{-1}{(-2x + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{(-2x + 1)^{\frac{3}{2}}}\right)}{dx}\\=&-(\frac{\frac{-3}{2}(-2 + 0)}{(-2x + 1)^{\frac{5}{2}}})\\=&\frac{-3}{(-2x + 1)^{\frac{5}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-3}{(-2x + 1)^{\frac{5}{2}}}\right)}{dx}\\=&-3(\frac{\frac{-5}{2}(-2 + 0)}{(-2x + 1)^{\frac{7}{2}}})\\=&\frac{-15}{(-2x + 1)^{\frac{7}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !