There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{{x}^{2} - 4}{\frac{1}{x}}^{8}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{x^{2} - 4}}{x^{8}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{x^{2} - 4}}{x^{8}}\right)}{dx}\\=&\frac{-8e^{x^{2} - 4}}{x^{9}} + \frac{e^{x^{2} - 4}(2x + 0)}{x^{8}}\\=&\frac{-8e^{x^{2} - 4}}{x^{9}} + \frac{2e^{x^{2} - 4}}{x^{7}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !