There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (16 - 0.03x)(500 + x) + (10 + 0.02x)(500 - x) - 8000\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 16x - 15x - 0.03x^{2} - 10x + 10x - 0.02x^{2} + 5000\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 16x - 15x - 0.03x^{2} - 10x + 10x - 0.02x^{2} + 5000\right)}{dx}\\=&16 - 15 - 0.03*2x - 10 + 10 - 0.02*2x + 0\\=& - 0.06x - 0.04x + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !