There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ -0.0002{x}^{3} + 0.0051{x}^{2} + 0.0078x + 8.069\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -0.0002x^{3} + 0.0051x^{2} + 0.0078x + 8.069\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -0.0002x^{3} + 0.0051x^{2} + 0.0078x + 8.069\right)}{dx}\\=&-0.0002*3x^{2} + 0.0051*2x + 0.0078 + 0\\=&-0.0006x^{2} + 0.0102x + 0.0078\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -0.0006x^{2} + 0.0102x + 0.0078\right)}{dx}\\=&-0.0006*2x + 0.0102 + 0\\=&-0.0012x + 0.0102\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !