There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(x - 5)(x - 10)(x - 20)(x - 30)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} - 65x^{4} + 1400x^{3} - 11500x^{2} + 30000x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} - 65x^{4} + 1400x^{3} - 11500x^{2} + 30000x\right)}{dx}\\=&5x^{4} - 65*4x^{3} + 1400*3x^{2} - 11500*2x + 30000\\=&5x^{4} - 260x^{3} + 4200x^{2} - 23000x + 30000\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !