Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 0.0028{x}^{3} - 0.0399{x}^{2} + 0.2057x + 6.259\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.0028x^{3} - 0.0399x^{2} + 0.2057x + 6.259\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.0028x^{3} - 0.0399x^{2} + 0.2057x + 6.259\right)}{dx}\\=&0.0028*3x^{2} - 0.0399*2x + 0.2057 + 0\\=&0.0084x^{2} - 0.0798x + 0.2057\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0.0084x^{2} - 0.0798x + 0.2057\right)}{dx}\\=&0.0084*2x - 0.0798 + 0\\=&0.0168x - 0.0798\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return