There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {2}^{x}{e}^{x}{π}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{x}{e}^{x}{π}^{x}\right)}{dx}\\=&({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)})){e}^{x}{π}^{x} + {2}^{x}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})){π}^{x} + {2}^{x}{e}^{x}({π}^{x}((1)ln(π) + \frac{(x)(0)}{(π)}))\\=&{2}^{x}{e}^{x}{π}^{x}ln(2) + {e}^{x}{π}^{x}{2}^{x}ln(π) + {e}^{x}{2}^{x}{π}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !