There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ sin(x)cos(x) + \frac{sin(π)}{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(x)cos(x) + \frac{1}{4}sin(π)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x)cos(x) + \frac{1}{4}sin(π)\right)}{dx}\\=&cos(x)cos(x) + sin(x)*-sin(x) + \frac{1}{4}cos(π)*0\\=&cos^{2}(x) - sin^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( cos^{2}(x) - sin^{2}(x)\right)}{dx}\\=&-2cos(x)sin(x) - 2sin(x)cos(x)\\=&-4sin(x)cos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !