There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 0.0001{x}^{3} + 0.0044{x}^{2} - 0.1399x + 8.9987\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.0001x^{3} + 0.0044x^{2} - 0.1399x + 8.9987\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.0001x^{3} + 0.0044x^{2} - 0.1399x + 8.9987\right)}{dx}\\=&0.0001*3x^{2} + 0.0044*2x - 0.1399 + 0\\=&0.0003x^{2} + 0.0088x - 0.1399\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0.0003x^{2} + 0.0088x - 0.1399\right)}{dx}\\=&0.0003*2x + 0.0088 + 0\\=&0.0006x + 0.0088\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !