There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 1 - {x}^{(1 - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - {x}^{(-x + 1)} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - {x}^{(-x + 1)} + 1\right)}{dx}\\=& - ({x}^{(-x + 1)}((-1 + 0)ln(x) + \frac{(-x + 1)(1)}{(x)})) + 0\\=&{x}^{(-x + 1)}ln(x) + {x}^{(-x + 1)} - \frac{{x}^{(-x + 1)}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !