Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of s is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4{x}^{2} - \frac{9{(\frac{3(s + x)}{2} - 2)}^{2}}{2}\ with\ respect\ to\ s:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{81}{4}xs - \frac{81}{8}s^{2} - \frac{49}{8}x^{2} + 27s + 27x - 18\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{81}{4}xs - \frac{81}{8}s^{2} - \frac{49}{8}x^{2} + 27s + 27x - 18\right)}{ds}\\=& - \frac{81}{4}x - \frac{81}{8}*2s + 0 + 27 + 0 + 0\\=& - \frac{81x}{4} - \frac{81s}{4} + 27\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return