There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4{x}^{2} - \frac{9{(\frac{3(s + x)}{2} - 2)}^{2}}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-49}{8}x^{2} - \frac{81}{4}sx - \frac{81}{8}s^{2} + 27s + 27x - 18\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-49}{8}x^{2} - \frac{81}{4}sx - \frac{81}{8}s^{2} + 27s + 27x - 18\right)}{dx}\\=&\frac{-49}{8}*2x - \frac{81}{4}s + 0 + 0 + 27 + 0\\=&\frac{-49x}{4} - \frac{81s}{4} + 27\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !