There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ a{x}^{25} + b{x}^{24} + c{x}^{23} + d{x}^{22}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax^{25} + bx^{24} + cx^{23} + dx^{22}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax^{25} + bx^{24} + cx^{23} + dx^{22}\right)}{dx}\\=&a*25x^{24} + b*24x^{23} + c*23x^{22} + d*22x^{21}\\=&25ax^{24} + 24bx^{23} + 23cx^{22} + 22dx^{21}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 25ax^{24} + 24bx^{23} + 23cx^{22} + 22dx^{21}\right)}{dx}\\=&25a*24x^{23} + 24b*23x^{22} + 23c*22x^{21} + 22d*21x^{20}\\=&600ax^{23} + 552bx^{22} + 506cx^{21} + 462dx^{20}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 600ax^{23} + 552bx^{22} + 506cx^{21} + 462dx^{20}\right)}{dx}\\=&600a*23x^{22} + 552b*22x^{21} + 506c*21x^{20} + 462d*20x^{19}\\=&13800ax^{22} + 12144bx^{21} + 10626cx^{20} + 9240dx^{19}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 13800ax^{22} + 12144bx^{21} + 10626cx^{20} + 9240dx^{19}\right)}{dx}\\=&13800a*22x^{21} + 12144b*21x^{20} + 10626c*20x^{19} + 9240d*19x^{18}\\=&303600ax^{21} + 255024bx^{20} + 212520cx^{19} + 175560dx^{18}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !