Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of s is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4{x}^{3} + 4{x}^{2}s - {(\frac{3(s + x)}{2} - 2)}^{3}\ with\ respect\ to\ s:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{49}{8}x^{2}s - \frac{81}{8}xs^{2} - \frac{27}{8}s^{3} + 27xs + \frac{27}{2}s^{2} + \frac{5}{8}x^{3} + \frac{27}{2}x^{2} - 18s - 18x + 8\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{49}{8}x^{2}s - \frac{81}{8}xs^{2} - \frac{27}{8}s^{3} + 27xs + \frac{27}{2}s^{2} + \frac{5}{8}x^{3} + \frac{27}{2}x^{2} - 18s - 18x + 8\right)}{ds}\\=& - \frac{49}{8}x^{2} - \frac{81}{8}x*2s - \frac{27}{8}*3s^{2} + 27x + \frac{27}{2}*2s + 0 + 0 - 18 + 0 + 0\\=& - \frac{81xs}{4} - \frac{49x^{2}}{8} - \frac{81s^{2}}{8} + 27x + 27s - 18\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return