Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 12{x}^{2} + 8xs - \frac{9{(\frac{3(s + x)}{2} - 2)}^{2}}{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{111}{16}x^{2} - \frac{17}{8}sx - \frac{81}{16}s^{2} + \frac{27}{2}s + \frac{27}{2}x - 9\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{111}{16}x^{2} - \frac{17}{8}sx - \frac{81}{16}s^{2} + \frac{27}{2}s + \frac{27}{2}x - 9\right)}{dx}\\=&\frac{111}{16}*2x - \frac{17}{8}s + 0 + 0 + \frac{27}{2} + 0\\=&\frac{111x}{8} - \frac{17s}{8} + \frac{27}{2}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return