There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(2.89 + xx - 4x + 4) + sqrt(1.69 + xx - 6x + 9) + sqrt(5.29 + xx)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(x^{2} - 4x + 6.89) + sqrt(x^{2} - 6x + 10.69) + sqrt(x^{2} + 5.29)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(x^{2} - 4x + 6.89) + sqrt(x^{2} - 6x + 10.69) + sqrt(x^{2} + 5.29)\right)}{dx}\\=&\frac{(2x - 4 + 0)*0.5}{(x^{2} - 4x + 6.89)^{\frac{1}{2}}} + \frac{(2x - 6 + 0)*0.5}{(x^{2} - 6x + 10.69)^{\frac{1}{2}}} + \frac{(2x + 0)*0.5}{(x^{2} + 5.29)^{\frac{1}{2}}}\\=&\frac{x}{(x^{2} - 4x + 6.89)^{\frac{1}{2}}} + \frac{x}{(x^{2} - 6x + 10.69)^{\frac{1}{2}}} + \frac{x}{(x^{2} + 5.29)^{\frac{1}{2}}} - \frac{3}{(x^{2} - 6x + 10.69)^{\frac{1}{2}}} - \frac{2}{(x^{2} - 4x + 6.89)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !