Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4{x}^{2}(s + x) - {(\frac{3(s + x)}{2} - 2)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-49}{8}sx^{2} + \frac{5}{8}x^{3} - \frac{81}{8}s^{2}x + 27sx + \frac{27}{2}s^{2} - \frac{27}{8}s^{3} + \frac{27}{2}x^{2} - 18s - 18x + 8\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-49}{8}sx^{2} + \frac{5}{8}x^{3} - \frac{81}{8}s^{2}x + 27sx + \frac{27}{2}s^{2} - \frac{27}{8}s^{3} + \frac{27}{2}x^{2} - 18s - 18x + 8\right)}{dx}\\=&\frac{-49}{8}s*2x + \frac{5}{8}*3x^{2} - \frac{81}{8}s^{2} + 27s + 0 + 0 + \frac{27}{2}*2x + 0 - 18 + 0\\=&\frac{-49sx}{4} + \frac{15x^{2}}{8} - \frac{81s^{2}}{8} + 27s + 27x - 18\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return