There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 + 3{x}^{2}){\frac{1}{(1 - {x}^{2})}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3x^{2}}{(-x^{2} + 1)^{3}} + \frac{1}{(-x^{2} + 1)^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3x^{2}}{(-x^{2} + 1)^{3}} + \frac{1}{(-x^{2} + 1)^{3}}\right)}{dx}\\=&3(\frac{-3(-2x + 0)}{(-x^{2} + 1)^{4}})x^{2} + \frac{3*2x}{(-x^{2} + 1)^{3}} + (\frac{-3(-2x + 0)}{(-x^{2} + 1)^{4}})\\=&\frac{18x^{3}}{(-x^{2} + 1)^{4}} + \frac{6x}{(-x^{2} + 1)^{3}} + \frac{6x}{(-x^{2} + 1)^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !