Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{(x - 3)}^{5}}{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}x^{5} - 5x^{4} + 30x^{3} - 90x^{2} + 135x - 81\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}x^{5} - 5x^{4} + 30x^{3} - 90x^{2} + 135x - 81\right)}{dx}\\=&\frac{1}{3}*5x^{4} - 5*4x^{3} + 30*3x^{2} - 90*2x + 135 + 0\\=&\frac{5x^{4}}{3} - 20x^{3} + 90x^{2} - 180x + 135\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{5x^{4}}{3} - 20x^{3} + 90x^{2} - 180x + 135\right)}{dx}\\=&\frac{5*4x^{3}}{3} - 20*3x^{2} + 90*2x - 180 + 0\\=&\frac{20x^{3}}{3} - 60x^{2} + 180x - 180\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return