There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{(\frac{x}{y})} - xy\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(\frac{x}{y})} - yx\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(\frac{x}{y})} - yx\right)}{dx}\\=&({e}^{(\frac{x}{y})}((\frac{1}{y})ln(e) + \frac{(\frac{x}{y})(0)}{(e)})) - y\\=&\frac{{e}^{(\frac{x}{y})}}{y} - y\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !