Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (\frac{d(2)({x}^{2})}{d} - 2{\frac{1}{({x}^{2})}}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{2} - \frac{2}{x^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{2} - \frac{2}{x^{4}}\right)}{dx}\\=&2*2x - \frac{2*-4}{x^{5}}\\=&4x + \frac{8}{x^{5}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x + \frac{8}{x^{5}}\right)}{dx}\\=&4 + \frac{8*-5}{x^{6}}\\=& - \frac{40}{x^{6}} + 4\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( - \frac{40}{x^{6}} + 4\right)}{dx}\\=& - \frac{40*-6}{x^{7}} + 0\\=&\frac{240}{x^{7}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{240}{x^{7}}\right)}{dx}\\=&\frac{240*-7}{x^{8}}\\=& - \frac{1680}{x^{8}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return