Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (d({x}^{2}){\frac{1}{d}}^{2} - 2{\frac{1}{({x}^{2})}}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{d} - \frac{2}{x^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{d} - \frac{2}{x^{4}}\right)}{dx}\\=&\frac{2x}{d} - \frac{2*-4}{x^{5}}\\=&\frac{2x}{d} + \frac{8}{x^{5}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2x}{d} + \frac{8}{x^{5}}\right)}{dx}\\=&\frac{2}{d} + \frac{8*-5}{x^{6}}\\=&\frac{2}{d} - \frac{40}{x^{6}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{d} - \frac{40}{x^{6}}\right)}{dx}\\=&0 - \frac{40*-6}{x^{7}}\\=&\frac{240}{x^{7}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{240}{x^{7}}\right)}{dx}\\=&\frac{240*-7}{x^{8}}\\=& - \frac{1680}{x^{8}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return