Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{-1}{({x}^{2})} + 2x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-1}{x^{2}} + 2x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-1}{x^{2}} + 2x\right)}{dx}\\=&\frac{--2}{x^{3}} + 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{x^{3}} + 2\right)}{dx}\\=&\frac{2*-3}{x^{4}} + 0\\=&\frac{-6}{x^{4}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-6}{x^{4}}\right)}{dx}\\=&\frac{-6*-4}{x^{5}}\\=&\frac{24}{x^{5}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{24}{x^{5}}\right)}{dx}\\=&\frac{24*-5}{x^{6}}\\=&\frac{-120}{x^{6}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return