Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{ln(ch(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{ln(ch(x))}\right)}{dx}\\=&({x}^{ln(ch(x))}((\frac{sh(x)}{(ch(x))})ln(x) + \frac{(ln(ch(x)))(1)}{(x)}))\\=&\frac{{x}^{ln(ch(x))}ln(x)sh(x)}{ch(x)} + \frac{{x}^{ln(ch(x))}ln(ch(x))}{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return