There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-A(\frac{15.96x}{n} + 2)}{(12p{x}^{3}{(1 + \frac{5.32x}{n})}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-1.33A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{2}} - \frac{0.166666666666667A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)px^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-1.33A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{2}} - \frac{0.166666666666667A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)px^{3}}\right)}{dx}\\=&\frac{-1.33(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})A}{(\frac{5.32x}{n} + 1)npx^{2}} - \frac{1.33(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})A}{(\frac{5.32x}{n} + 1)npx^{2}} - \frac{1.33A*-2}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{3}} - \frac{0.166666666666667(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})A}{(\frac{5.32x}{n} + 1)px^{3}} - \frac{0.166666666666667(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})A}{(\frac{5.32x}{n} + 1)px^{3}} - \frac{0.166666666666667A*-3}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)px^{4}}\\=&\frac{7.0756A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)n^{2}px^{2}} + \frac{7.0756A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)n^{2}px^{2}} + \frac{2.66A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{3}} + \frac{0.886666666666667A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{3}} + \frac{0.886666666666667A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)npx^{3}} + \frac{0.5A}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)px^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !