Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-a(\frac{15.96x}{n} + 2)}{(12a{x}^{3}{(1 + \frac{5.32x}{n})}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-1.33}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{2}} - \frac{0.166666666666667}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)x^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-1.33}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{2}} - \frac{0.166666666666667}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)x^{3}}\right)}{dx}\\=&\frac{-1.33(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})}{(\frac{5.32x}{n} + 1)nx^{2}} - \frac{1.33(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})}{(\frac{5.32x}{n} + 1)nx^{2}} - \frac{1.33*-2}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{3}} - \frac{0.166666666666667(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})}{(\frac{5.32x}{n} + 1)x^{3}} - \frac{0.166666666666667(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})}{(\frac{5.32x}{n} + 1)x^{3}} - \frac{0.166666666666667*-3}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)x^{4}}\\=&\frac{7.0756}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)n^{2}x^{2}} + \frac{7.0756}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)n^{2}x^{2}} + \frac{2.66}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{3}} + \frac{0.886666666666667}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{3}} + \frac{0.886666666666667}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)nx^{3}} + \frac{0.5}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)x^{4}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return