There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-a(\frac{15.96x}{n} + 2)}{(c*2{x}^{3}{(1 + \frac{5.32x}{n})}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-7.98a}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)ncx^{2}} - \frac{a}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)cx^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-7.98a}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)ncx^{2}} - \frac{a}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)cx^{3}}\right)}{dx}\\=&\frac{-7.98(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})a}{(\frac{5.32x}{n} + 1)ncx^{2}} - \frac{7.98(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})a}{(\frac{5.32x}{n} + 1)ncx^{2}} - \frac{7.98a*-2}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)ncx^{3}} - \frac{(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})a}{(\frac{5.32x}{n} + 1)cx^{3}} - \frac{(\frac{-(\frac{5.32}{n} + 0)}{(\frac{5.32x}{n} + 1)^{2}})a}{(\frac{5.32x}{n} + 1)cx^{3}} - \frac{a*-3}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)cx^{4}}\\=&\frac{42.4536a}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)n^{2}cx^{2}} + \frac{42.4536a}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)n^{2}cx^{2}} + \frac{15.96a}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)ncx^{3}} + \frac{5.32a}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)ncx^{3}} + \frac{5.32a}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)ncx^{3}} + \frac{3a}{(\frac{5.32x}{n} + 1)(\frac{5.32x}{n} + 1)cx^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !