Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ -291.38992 + \frac{1364.59077}{({(1 + \frac{x}{98.87226})}^{27.0675})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1364.59077}{(0.0101140603036686x + 1)^{\frac{10827}{400}}} - 291.38992\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1364.59077}{(0.0101140603036686x + 1)^{\frac{10827}{400}}} - 291.38992\right)}{dx}\\=&1364.59077(\frac{-27.0675(0.0101140603036686 + 0)}{(0.0101140603036686x + 1)^{\frac{11227}{400}}}) + 0\\=&\frac{-373.57354496575}{(0.0101140603036686x + 1)^{\frac{11227}{400}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-373.57354496575}{(0.0101140603036686x + 1)^{\frac{11227}{400}}}\right)}{dx}\\=&-373.57354496575(\frac{-28.0675(0.0101140603036686 + 0)}{(0.0101140603036686x + 1)^{\frac{11627}{400}}})\\=&\frac{106.048708437797}{(0.0101140603036686x + 1)^{\frac{11627}{400}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return