Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{({x}^{2})}{4} + ({x}^{4})sin(\frac{1}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4}sin(\frac{1}{x}) + \frac{1}{4}x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4}sin(\frac{1}{x}) + \frac{1}{4}x^{2}\right)}{dx}\\=&4x^{3}sin(\frac{1}{x}) + \frac{x^{4}cos(\frac{1}{x})*-1}{x^{2}} + \frac{1}{4}*2x\\=&4x^{3}sin(\frac{1}{x}) - x^{2}cos(\frac{1}{x}) + \frac{x}{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x^{3}sin(\frac{1}{x}) - x^{2}cos(\frac{1}{x}) + \frac{x}{2}\right)}{dx}\\=&4*3x^{2}sin(\frac{1}{x}) + \frac{4x^{3}cos(\frac{1}{x})*-1}{x^{2}} - 2xcos(\frac{1}{x}) - \frac{x^{2}*-sin(\frac{1}{x})*-1}{x^{2}} + \frac{1}{2}\\=&12x^{2}sin(\frac{1}{x}) - 6xcos(\frac{1}{x}) - sin(\frac{1}{x}) + \frac{1}{2}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return