There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(2n + 1)}^{\frac{1}{n}}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (2n + 1)^{\frac{1}{n}}\right)}{dn}\\=&((2n + 1)^{\frac{1}{n}}((\frac{-1}{n^{2}})ln(2n + 1) + \frac{(\frac{1}{n})(2 + 0)}{(2n + 1)}))\\=&\frac{-(2n + 1)^{\frac{1}{n}}ln(2n + 1)}{n^{2}} + \frac{2(2n + 1)^{\frac{1}{n}}}{(2n + 1)n}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !