There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x{(arctan(h)x)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{\frac{3}{2}}arctan^{\frac{1}{2}}(h)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{\frac{3}{2}}arctan^{\frac{1}{2}}(h)\right)}{dx}\\=&\frac{3}{2}x^{\frac{1}{2}}arctan^{\frac{1}{2}}(h) + x^{\frac{3}{2}}(\frac{\frac{1}{2}(0)}{arctan^{\frac{1}{2}}(h)(1 + (h)^{2})})\\=&\frac{3x^{\frac{1}{2}}arctan^{\frac{1}{2}}(h)}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !