Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{({y}^{4} + 5)}{({y}^{2} + 5)})}^{6}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(y^{4} + 5)^{6}}{(y^{2} + 5)^{6}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(y^{4} + 5)^{6}}{(y^{2} + 5)^{6}}\right)}{dx}\\=&\frac{(6(y^{4} + 5)^{5}(0 + 0))}{(y^{2} + 5)^{6}} + (y^{4} + 5)^{6}(\frac{-6(0 + 0)}{(y^{2} + 5)^{7}})\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return