There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arcsin(\frac{(1 - x)}{(1 + x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})\right)}{dx}\\=&(\frac{(-(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{1}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}}))}{((1 - (\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{2})^{\frac{1}{2}})})\\=&\frac{x}{(\frac{-x^{2}}{(x + 1)^{2}} + \frac{2x}{(x + 1)^{2}} - \frac{1}{(x + 1)^{2}} + 1)^{\frac{1}{2}}(x + 1)^{2}} - \frac{1}{(\frac{-x^{2}}{(x + 1)^{2}} + \frac{2x}{(x + 1)^{2}} - \frac{1}{(x + 1)^{2}} + 1)^{\frac{1}{2}}(x + 1)^{2}} - \frac{1}{(\frac{-x^{2}}{(x + 1)^{2}} + \frac{2x}{(x + 1)^{2}} - \frac{1}{(x + 1)^{2}} + 1)^{\frac{1}{2}}(x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !