There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {ln(2x + 1)}^{10}{\frac{1}{(3x - 1)}}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln^{10}(2x + 1)}{(3x - 1)^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln^{10}(2x + 1)}{(3x - 1)^{4}}\right)}{dx}\\=&(\frac{-4(3 + 0)}{(3x - 1)^{5}})ln^{10}(2x + 1) + \frac{10ln^{9}(2x + 1)(2 + 0)}{(3x - 1)^{4}(2x + 1)}\\=&\frac{-12ln^{10}(2x + 1)}{(3x - 1)^{5}} + \frac{20ln^{9}(2x + 1)}{(2x + 1)(3x - 1)^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !