There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{(1 + ({e}^{\frac{1}{x}}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{({e}^{\frac{1}{x}} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{({e}^{\frac{1}{x}} + 1)}\right)}{dx}\\=&(\frac{-(({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)})) + 0)}{({e}^{\frac{1}{x}} + 1)^{2}})\\=&\frac{{e}^{\frac{1}{x}}}{({e}^{\frac{1}{x}} + 1)^{2}x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !