Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{ax}{(1 + bx)} - c)}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a^{2}x^{2}}{(bx + 1)^{2}} - \frac{2acx}{(bx + 1)} + c^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a^{2}x^{2}}{(bx + 1)^{2}} - \frac{2acx}{(bx + 1)} + c^{2}\right)}{dx}\\=&(\frac{-2(b + 0)}{(bx + 1)^{3}})a^{2}x^{2} + \frac{a^{2}*2x}{(bx + 1)^{2}} - 2(\frac{-(b + 0)}{(bx + 1)^{2}})acx - \frac{2ac}{(bx + 1)} + 0\\=&\frac{-2a^{2}bx^{2}}{(bx + 1)^{3}} + \frac{2a^{2}x}{(bx + 1)^{2}} + \frac{2abcx}{(bx + 1)^{2}} - \frac{2ac}{(bx + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return