Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - {(\frac{2}{11})}^{x})}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{{\frac{2}{11}}^{x}}{x} + \frac{1}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{{\frac{2}{11}}^{x}}{x} + \frac{1}{x}\right)}{dx}\\=& - \frac{-{\frac{2}{11}}^{x}}{x^{2}} - \frac{({\frac{2}{11}}^{x}((1)ln(\frac{2}{11}) + \frac{(x)(0)}{(\frac{2}{11})}))}{x} + \frac{-1}{x^{2}}\\=& - \frac{{\frac{2}{11}}^{x}ln(\frac{2}{11})}{x} + \frac{{\frac{2}{11}}^{x}}{x^{2}} - \frac{1}{x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return