There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{(x)}^{-2}}{({e}^{(\frac{-1}{x})})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{\frac{1}{x}}}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{\frac{1}{x}}}{x^{2}}\right)}{dx}\\=&\frac{-2{e}^{\frac{1}{x}}}{x^{3}} + \frac{({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))}{x^{2}}\\=&\frac{-2{e}^{\frac{1}{x}}}{x^{3}} - \frac{{e}^{\frac{1}{x}}}{x^{4}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2{e}^{\frac{1}{x}}}{x^{3}} - \frac{{e}^{\frac{1}{x}}}{x^{4}}\right)}{dx}\\=&\frac{-2*-3{e}^{\frac{1}{x}}}{x^{4}} - \frac{2({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))}{x^{3}} - \frac{-4{e}^{\frac{1}{x}}}{x^{5}} - \frac{({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))}{x^{4}}\\=&\frac{6{e}^{\frac{1}{x}}}{x^{4}} + \frac{6{e}^{\frac{1}{x}}}{x^{5}} + \frac{{e}^{\frac{1}{x}}}{x^{6}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !