There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({x}^{2} - 3)e^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}e^{x} - 3e^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}e^{x} - 3e^{x}\right)}{dx}\\=&2xe^{x} + x^{2}e^{x} - 3e^{x}\\=&2xe^{x} + x^{2}e^{x} - 3e^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2xe^{x} + x^{2}e^{x} - 3e^{x}\right)}{dx}\\=&2e^{x} + 2xe^{x} + 2xe^{x} + x^{2}e^{x} - 3e^{x}\\=&-e^{x} + 4xe^{x} + x^{2}e^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !