There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ((x - 1)(x - 1)((1.70158 + 1)(x - 1) + 1.70158) + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 1.70158x^{3} - 1.70158x^{2} + x^{3} - x^{2} + 1.70158x^{2} - 1.70158x^{2} + 1.70158x - x^{2} + x - 1.70158x - 1.70158x^{2} + 1.70158x - x^{2} + x - 1.70158x + 1.70158x + x + 0.000000000000000222044604925031\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 1.70158x^{3} - 1.70158x^{2} + x^{3} - x^{2} + 1.70158x^{2} - 1.70158x^{2} + 1.70158x - x^{2} + x - 1.70158x - 1.70158x^{2} + 1.70158x - x^{2} + x - 1.70158x + 1.70158x + x + 0.000000000000000222044604925031\right)}{dx}\\=&1.70158*3x^{2} - 1.70158*2x + *3x^{2} - *2x + 1.70158*2x - 1.70158*2x + 1.70158 - *2x + 1 - 1.70158 - 1.70158*2x + 1.70158 - *2x + 1 - 1.70158 + 1.70158 + 1 + 0\\=&5.10474x^{2} - 3.40316x + 3x^{2} - 2x + 3.40316x - 3.40316x - 2x - 3.40316x - 2x + 4.70158\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5.10474x^{2} - 3.40316x + 3x^{2} - 2x + 3.40316x - 3.40316x - 2x - 3.40316x - 2x + 4.70158\right)}{dx}\\=&5.10474*2x - 3.40316 + 3*2x - 2 + 3.40316 - 3.40316 - 2 - 3.40316 - 2 + 0\\=&10.20948x + 6x - 12.80632\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !