There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({x}^{3})cos(\frac{1}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}cos(\frac{1}{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}cos(\frac{1}{x})\right)}{dx}\\=&3x^{2}cos(\frac{1}{x}) + \frac{x^{3}*-sin(\frac{1}{x})*-1}{x^{2}}\\=&3x^{2}cos(\frac{1}{x}) + xsin(\frac{1}{x})\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{2}cos(\frac{1}{x}) + xsin(\frac{1}{x})\right)}{dx}\\=&3*2xcos(\frac{1}{x}) + \frac{3x^{2}*-sin(\frac{1}{x})*-1}{x^{2}} + sin(\frac{1}{x}) + \frac{xcos(\frac{1}{x})*-1}{x^{2}}\\=&6xcos(\frac{1}{x}) + 4sin(\frac{1}{x}) - \frac{cos(\frac{1}{x})}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !