Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -sin(x) + \frac{2{e}^{(-2x)}}{({e}^{(-2x)} + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -sin(x) + \frac{2{e}^{(-2x)}}{({e}^{(-2x)} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -sin(x) + \frac{2{e}^{(-2x)}}{({e}^{(-2x)} + 1)}\right)}{dx}\\=&-cos(x) + 2(\frac{-(({e}^{(-2x)}((-2)ln(e) + \frac{(-2x)(0)}{(e)})) + 0)}{({e}^{(-2x)} + 1)^{2}}){e}^{(-2x)} + \frac{2({e}^{(-2x)}((-2)ln(e) + \frac{(-2x)(0)}{(e)}))}{({e}^{(-2x)} + 1)}\\=&-cos(x) + \frac{4{e}^{(-4x)}}{({e}^{(-2x)} + 1)^{2}} - \frac{4{e}^{(-2x)}}{({e}^{(-2x)} + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return