There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({(2x + 1)}^{7}{\frac{1}{(3t - 1)}}^{4})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{(2x + 1)^{7}}{(3t - 1)^{4}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{(2x + 1)^{7}}{(3t - 1)^{4}})\right)}{dx}\\=&\frac{(\frac{(7(2x + 1)^{6}(2 + 0))}{(3t - 1)^{4}} + (2x + 1)^{7}(\frac{-4(0 + 0)}{(3t - 1)^{5}}))}{(\frac{(2x + 1)^{7}}{(3t - 1)^{4}})}\\=&\frac{14}{(2x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !