There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(x + {({x}^{2} + {a}^{2})}^{\frac{1}{2}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x + (x^{2} + a^{2})^{\frac{1}{2}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x + (x^{2} + a^{2})^{\frac{1}{2}})\right)}{dx}\\=&\frac{(1 + (\frac{\frac{1}{2}(2x + 0)}{(x^{2} + a^{2})^{\frac{1}{2}}}))}{(x + (x^{2} + a^{2})^{\frac{1}{2}})}\\=&\frac{x}{(x + (x^{2} + a^{2})^{\frac{1}{2}})(x^{2} + a^{2})^{\frac{1}{2}}} + \frac{1}{(x + (x^{2} + a^{2})^{\frac{1}{2}})}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{x}{(x + (x^{2} + a^{2})^{\frac{1}{2}})(x^{2} + a^{2})^{\frac{1}{2}}} + \frac{1}{(x + (x^{2} + a^{2})^{\frac{1}{2}})}\right)}{dx}\\=&\frac{(\frac{-(1 + (\frac{\frac{1}{2}(2x + 0)}{(x^{2} + a^{2})^{\frac{1}{2}}}))}{(x + (x^{2} + a^{2})^{\frac{1}{2}})^{2}})x}{(x^{2} + a^{2})^{\frac{1}{2}}} + \frac{(\frac{\frac{-1}{2}(2x + 0)}{(x^{2} + a^{2})^{\frac{3}{2}}})x}{(x + (x^{2} + a^{2})^{\frac{1}{2}})} + \frac{1}{(x + (x^{2} + a^{2})^{\frac{1}{2}})(x^{2} + a^{2})^{\frac{1}{2}}} + (\frac{-(1 + (\frac{\frac{1}{2}(2x + 0)}{(x^{2} + a^{2})^{\frac{1}{2}}}))}{(x + (x^{2} + a^{2})^{\frac{1}{2}})^{2}})\\=& - \frac{x^{2}}{(x + (x^{2} + a^{2})^{\frac{1}{2}})^{2}(x^{2} + a^{2})} - \frac{2x}{(x + (x^{2} + a^{2})^{\frac{1}{2}})^{2}(x^{2} + a^{2})^{\frac{1}{2}}} - \frac{x^{2}}{(x + (x^{2} + a^{2})^{\frac{1}{2}})(x^{2} + a^{2})^{\frac{3}{2}}} + \frac{1}{(x + (x^{2} + a^{2})^{\frac{1}{2}})(x^{2} + a^{2})^{\frac{1}{2}}} - \frac{1}{(x + (x^{2} + a^{2})^{\frac{1}{2}})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !