There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{4} + 1)}{(x - {x}^{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{4}}{(x - x^{3})} + \frac{1}{(x - x^{3})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{4}}{(x - x^{3})} + \frac{1}{(x - x^{3})}\right)}{dx}\\=&(\frac{-(1 - 3x^{2})}{(x - x^{3})^{2}})x^{4} + \frac{4x^{3}}{(x - x^{3})} + (\frac{-(1 - 3x^{2})}{(x - x^{3})^{2}})\\=&\frac{3x^{6}}{(x - x^{3})^{2}} - \frac{x^{4}}{(x - x^{3})^{2}} + \frac{4x^{3}}{(x - x^{3})} + \frac{3x^{2}}{(x - x^{3})^{2}} - \frac{1}{(x - x^{3})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !