There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (({x}^{2} - x - 2){\frac{1}{x}}^{2})({e}^{\frac{1}{x}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{\frac{1}{x}} - \frac{{e}^{\frac{1}{x}}}{x} - \frac{2{e}^{\frac{1}{x}}}{x^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{\frac{1}{x}} - \frac{{e}^{\frac{1}{x}}}{x} - \frac{2{e}^{\frac{1}{x}}}{x^{2}}\right)}{dx}\\=&({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)})) - \frac{-{e}^{\frac{1}{x}}}{x^{2}} - \frac{({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))}{x} - \frac{2*-2{e}^{\frac{1}{x}}}{x^{3}} - \frac{2({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))}{x^{2}}\\=&\frac{5{e}^{\frac{1}{x}}}{x^{3}} + \frac{2{e}^{\frac{1}{x}}}{x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !